
The Double Z Item Buffer

for Volume Rendering Non-Regular Grids

Samuel P. Uselton

Report RNR-91-027, September 1991

NAS Systems Division

Applied Research Branch

NASA Ames Research Center

Mail Stop T-045-1

Moffett Field, Ca 94035

Abstract

The Double Z Item Buffer is a technique for improving the speed of volume rendering

data sampled over irregular grids. Volume rendering of data sampled over regular grids

can be done at interactive speeds and hardware has been designed to increase the size

of the grids that can be volume rendered at these speeds. Volume rendering of data

sampled on structured (also called array connected), but geometrically irregular, grids and

unstructured (also called cell connected) grids is usually done by ray casting (ray tracing

limited to initial rays from the eye through the pixels). Ray casting is used because

it is a straight-forward method for finding a front-to-back ordering of the cells covering

each pixel of the desired image. However, ray casting is numerically intensive and not

well supported by the graphics hardware found in workstations. A small modification

in graphics microcode and some additional memory (or a small special purpose hardware

unit) can be used to generate the front-to-back ordering required for volume rendering data

on these inconvenient grids. The same technique can be used to generate a back-to-front

ordering, which may be used in compositing operations. The same second Z buffer and

front-to-back ordering (or back-to-front ordering) can also be used to implement a more

accurate transparency shading for surface modeled objects than is ordinarily available in

Z buffer rendering.

S. P. Uselton is employed by Computer Sciences Corporation. This work was per-

formed for NASA under contract NAS-2-12961.



The Double Z Item Buffer

for Volume Rendering Non-Regular Grids

(Extended Abstract)

Samuel P. Uselton

Computer Sciences Corp.

NASA Ames Research Center

Introduction:

The Double Z Item Buffer is a technique for improving the speed of volume rendering

data sampled over irregular grids. Volume rendering of data sampled over regular grids

can be done at interactive speeds ([West89], [Levo88]), and hardware has been designed to

increase the size of the grids that can be volume rendered at these speeds [Kauf90]. Volume

rendering of data sampled on structured (also called array connected), but geometrically

irregular, grids and unstructured (also called cell connected) grids is usually done by ray

casting (ray tracing limited to initial rays from the eye through the pixels). Ray casting is

used because it is a straight-forward method for finding a front-to-back ordering of the cells

covering each pixel of the desired image. However, ray casting is numerically intensive and

not well supported by the graphics hardware found in workstations. A small modification

in graphics microcode and some additional memory (or a small special purpose hardware

unit) can be used to generate the front-to-back ordering required for volume rendering data

on these inconvenient grids. The same technique can be used to generate a back-to-front

ordering, which may be used in compositing operations. The same second Z buffer and

front-to-back ordering (or back-to-front ordering) can also be used to implement a more

accurate transparency shading for surface modeled objects than is ordinarily available in

Z buffer rendering.

Background:

Ray casting, in the context of volume rendering densely sampled data, can be accel-

erated by exploiting coherency of the grid. For each ray, for any cell after the first one hit,

determining which face of the cell contains the exit point of the ray can also be used to

determine the next cell entered [Garr90]. Therefore, no global search is required except (1)

for the initial cell hit by each ray and (2) for a cell hit re-entering the grid after crossing

a hole in the geometry. A strategy for avoiding case (1) was conceived by Hultquist and

Uselton, and described by Uselton at the San Diego Workshop on Volume Visualization

in December 1990 and in [Usel91]. It is a variation on the Item Buffer idea described by

Weghorst, Hooper and Greenberg in [Wegh84] and used in [Sale90]. In this new scheme,

each grid cell face is assigned an identification number. In a structured grid this number

is formed from the triple of indices of the cell and an indication of which of three possible

face orientations. There are six faces per cell in a structured grid, but almost all faces are

shared between two cells. A face can be thought of as belonging to the cell with the smaller

index values in all three dimensions. This identification number is mapped to RGB color



space and cell faces axe rendered using a hardware implementation of a traditional Z-buffer

visible surface algorithm. Pixels are read from this image and the RGB values mapped

back to the cell face identification numbers. As long as all cell faces can be represented

uniquely, (with one extra value for the background color) the first cell hit and on which

face (and all misses) can be uniquely determined. For unstructured grids, a more arbitrary

numbering scheme must be used. A level of indirection is needed to access cell and face

information, but otherwise the method is unchanged.

Method:

The Item Buffer technique can be further extended to find successive cells and cell

faces covering pixels in depth sorted order. This extension requires a second memory

array of the same size as the usual Z buffer. It is used to retain the values of the Z

buffer generated in the previous pass through the data. The Double Z Item Buffer method

also requires a second Z compare, which can easily be performed in parallel, and an And

operation to combine these results. The time required to perform this extra processing,

then, is only the additional single gate delay for the And. A psuedocode representation of

the algorithm follows.

previous_Z = Hither_Clip_Z;

modified = TRUE; ,

while (modified) do

Z_buffer = Yon_Clip_Z;

Image_buffer = background;

modified = FALSE;

for (all faces of all cells) do

for (all pixels covered by face) do

if ((cell_face_Z(x,y) < Z_buffer(x,y))

(cell_face_Z(x,y) > previous_Z(x,y))

then begin

Z_buffer(x,y) = cell_face_Z(x,y);

Image_buffer(x,y) = cell_face_id;

modified = TRUE;

end

end if

end for

end for

/* Image Buffer contains id numbers

and

)

of cell faces of next layer */

/* Decode id's and use here */

previous_Z = Z_buffer; /* actually a pointer value swap */
end while

Upon exiting the "for (all faces of all cells)" loop, Image_buffer contains the cell face

identification numbers of the faces behind the ones that set the previous_Z values on the

previous iteration of the while loop. Repeating this process yields the successive grid cell

2



faces for each pixel. If the then clause is never executed for any pixel in the course of

processing the whole grid, then the job is complete. This process yields a front-to-back

ordering of grid 'cell faces for each pixel.

As each layer of cell faces becomes available, the identification numbers must be de-

coded and data values accessed, and possibly interpolated. Then the shading contribution

for this layer can be composited into a separate, final image buffer. Note that the Z values

available in the two buffers can be used to determine thickness of the cell along the ray

path. This value is important in exponential attenuation volume shading. The result will

be the same as if rays had been computed. To maintain accuracy, the hither and yon

clipping values should be set as tightly around the grid as possible.

Performance:

The number of repetitions of the main while loop will be one greater than the largest

number of grid cell faces covering a pixel. This number is typically on the order of the

maximum single dimension of array connected data or the cube root of the number of grid

cells in an unstructured grid.

Current polygon rendering speed of graphics workstations is as great as one million

polygons per second. The delay to accomplish the And operation in the inner loop should

impact performance by no more than 25 or 30 percent, yielding a polygon rate of roughly

700,000 polygons per second. Of course this number does not include the work required to

decode and use the cell identification information. Assume that the work in a ray casting

implementation like [Garr90] is roughly evenly split between the ray stepping from cell

to cell and the data interpolation and shading calculations. We estimate the time spent

generating the front-to-back ordering to be less than one tenth of its previous value so

the time required to produce similar images would be only slightly more than half that

previously required.

Additional uses:

Transparency shading effects can be included in Z buffered polygon rendering by using

the same front-to-back ordering of polygons covering each pixel. Alternatively, this use

can be optimized by first rendering all opaque polygons and removing them from the list

of polygons. Then a back-to-front ordered rendering of transparent polygons can generate

the correct shade for each pixel of the image. A back-to-front ordering can be generated

by a simple reorganization of the tests used in the code above.

if ((cell_face_Z(x,y) > Z_buffer(x,y)) and

(cell_face_Z(x,y) < previous_Z(x,y)) )

then begin

Z_buffer(x,y) = cell_face_Z(x,y);

Image_buffer(x,y) = cell_face_id;

modified = TRUE;

The back-to-front ordering is also preferred in some methods of volume rendering.

The compositing operation is different, but this arrangement of the tests is unchanged for



that application.

Multiple intersecting grids can be displayed using the Double Z Item buffer method

with no changes. If one grid has priority over another, as in the fluid dynamics scheme

called "I-blanking," slightly more sophistication is required to discard cell faces that are

not relevant. The main inner loop, however, is still unchanged. Primitives other than

grids, for example radiation beam boundaries, can also be included by simply assigning
identification numbers to them.

Bibliography:

[Dreb88] Drebin, Robert A., Loren Carpenter and Pat Hanrahan, "Volume Rendering,"

Computer Graphics, vol 22, no 4, (August 1988), pp 65-74.

[Garr90] Garrity, Michael P., "Raytracing Irregular Volume Data," Computer Graphics,

vol 24, no 5, (November 1990), pp 35-40.

[Kauf90] Kaufman, Arie, Roni Yagel and Reuven Bakalash, "Direct Interaction with a 3D

Volumetric Environment," Computer Graphics, vol 24, no 2, (March 1990), pp 33-34.

[Levo88] Levoy, Marc, "Display of Surfaces from Volume Data," IEEE Comp. Graphics

and Appl., vol 8, no 3 (May 1988), pp 29-37.

[Neem90] Neeman, Henry, "A Decomposition Algorithm for Visualizing Irregular Grids,"

Computer Graphics, vol 24, no 5, (November 19.90), pp 49-56.

[Sabe88] Sabella, Paolo, "A Rendering Algorithm for Visualizing 3D Scalar Fields," Com-

purer Graphics, vol 22, no 4, (August 1988), pp 51-58.

[Sale90] Salesin, David and Jorge Stolfi, "Rendering CSG Models with a ZZ-Buffer," Com-

purer Graphics, vol 24, no 4, (August 1990), pp 67-76.

[Shir90] Shirley, Peter and Allan Tuchman, "A Polygonal Approximation to Direct Scalar

Volume Rendering," Computer Graphics, vol 24, no 5, (November 1990), pp 27-34.

[Upso88] Upson, Craig and Michael Keeler, "VBUFFER: Visible Volume Rendering", Com-

puter Graphics, vol 22, no 4, (August 1988), pp 59-64.

[Use191] Uselton, Samuel P., "Volume Rendering for Computational Fluid Dynamics: Ini-

tial Results," Technical Report RNR-91-026, Applied Research Branch, NAS Systems Di-

vision, NASA Ames Research Center, September 1991.

[Wegh84] Weghorst, Hank, Gary Hooper and Donald P. Greenberg, "Improved Computa-

tional Models for Ray Tracing," Trans. on Graphics, vol 3, no 1, (Jan. 1984), pp 52-69.

[West89] Westover, Lee, "Interactive Volume Rendering," Proc. Chapel Hill Workshop on

Volume Visualization, (May 18-19, 1989), pp 9-16.

[Wilh90] Wilhelms, Jane, Judy Challinger, Naim Alper, Shankar Ramamoorthy, and Arsi

Vaziri, "Direct Volume Rendering of Curvilinear Volumes," Computer Graphics, vol 24,

no 5, (November 1990), pp 41-48.

4


